Parameter estimates determined from BRDF measurements on standard reference materials

Deliverable 4.1.2*
of Work Package WP4
(Modelling and data analysis)

Authors:
Mikhail Langovoy, Gerd Wübbeler
Physikalisch-Technische Bundesanstalt, DE

Open access version of a report of the EMRP joint research project
JRP-i21 “Multidimensional reflectometry for industry”

*Open access versions might differ from full versions as any third party content, commercial technologies or data, as well as their analysis and related conclusions or recommendations are not released for open access
<table>
<thead>
<tr>
<th>1. Work package</th>
<th>2. Deliverable number</th>
<th>3. Reporting date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP 4</td>
<td>D4.1.2</td>
<td>March 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter estimates determined from BRDF measurements on standard reference materials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Author(s)</th>
<th>6. Lead author (e-mail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikhail Langovoy, Gerd Wübbeler</td>
<td>mikhail.langovoy@ptb.de</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Contributing researches (institutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB (DE), CNAM (F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Other contributing work packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Researchers in other WPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Supplementary notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add supplementary notes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterizing the appearance of real-world surfaces is a fundamental problem in multidimensional reflectometry, computer vision and computer graphics. For many applications, appearance is sufficiently well characterized by the bidirectional reflectance distribution function. BRDF is one of the fundamental concepts in such diverse fields as multidimensional reflectometry, computer graphics and computer vision. In this paper, we treat BRDF measurements as samples of points from high-dimensional non-linear non-convex manifold. We argue that statistical analysis of BRDF measurements has to account both for nonlinear structure of the data as well as for ill-behaved noise. Standard statistical methods can not be safely directly applied to BRDF data. Our study of parameters for Lambertian models clarifies certain pitfalls in analysis of BRDF data, and helps to develop more refined estimates for BRDF models. We also apply the notion of Pitman closeness to compare different estimators for BRDF models. This criterion for comparison of estimators seems to be especially appropriate for applications in metrology. Based on this and other criteria, we show that, in the context of BRDF model parameter estimation, estimators based on either median or trimmed mean are safer to use and are often more precise than estimators based on sample means.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Key words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflectometry, BRDF, empirical models, diffuse reflection, Lambertian model, computer vision, metrology, data analysis, statistics of manifolds, parameter estimation, robust estimator, Pitman closeness</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 1

2 Main definition .. 1

3 Important models of diffuse reflection 2
 3.1 Lambertian model .. 2
 3.2 Oren-Nayar model ... 2
 3.3 Lommel-Seeliger .. 2

4 Statistical analysis of BRDF models 2

5 Means, medians and robust estimators 4
 5.1 Basic properties of distributions in BRDF data 4
 5.2 Pitman closeness of estimators 4
 5.3 Definitions of basic estimators 5
 5.4 Mean and median ... 5
 5.5 Truncated mean and mean .. 6

6 Parameter estimation for Lambertian models 8

7 Conclusions .. 9

Acknowledgements ... 10
List of Figures

1. Mean beats median for the standard normal distribution . 6
2. Median grossly outperforms mean for heavy-tailed distributions 7
3. Median can outperform mean for mixtures of normal distributions 7
4. Median can outperform mean for mixtures of normal distributions with small errors 8
5. Trimmed mean totally dominates mean for Cauchy distributions 9

List of Tables
1 Introduction

Characterizing the appearance of real-world surfaces is a fundamental problem in multidimensional reflectometry, computer vision and computer graphics. For many applications, appearance is sufficiently well characterized by the BRDF (bidirectional reflectance distribution function) [20].

In the case of a fixed wavelength, BRDF describes reflected light as a four-dimensional function of incoming and outgoing light directions. In a special case of rotational symmetry, isotropic BRDFs are are used. Isotropic BRDFs are functions of only three angles. The BRDF is applied under the assumption that all light falls at a single surface point. The classical device for measuring BRDFs is the gonioreflectometer [5], which is composed of a photometer and light source that are moved relative to a surface sample under computer control.

In computer graphics and computer vision, usually either physically inspired analytic reflectance models, or parametric reflectance models chosen via qualitative criteria, are taken for granted and used to model BRDFs. These BRDF models are only crude approximations of reflectance of real materials. Moreover, analytic reflectance models are limited to describing only special subclasses of materials.

In multidimensional reflectometry, an alternative approach is usually taken [7]. One directly measures values of the BRDF for different combinations of the incoming and outgoing angles and then fits the measured data to a selected analytic model using optimization techniques. There are several shortcomings to this approach as well.

In computer graphics, it is important that BRDF models should be processed in real-time. Computer-modeled materials have to remind real materials qualitatively, but quantitative accuracy is not as important. The picture in reflectometry and metrology is almost the opposite: there is typically no need in real-time processing of BRDFs, but quantitative accuracy is the paramount. In view of this, some of the breakthrough results from computer vision and animation would not fit applications in reflectometry and in many industries.

Another difference with virtual reality models is that in computer graphics measurement uncertainties are essentially never present. This is not the case in metrology, reflectometry and in any real-world based industry. Since measurement errors can greatly influence shape and properties of BRDF manifolds, there is a clear need to develop new methods for handling BRDFs with measurement uncertainties.

In this paper, we treat BRDF measurements as samples of points from a high-dimensional and highly non-linear non-convex manifold. We argue that any realistic statistical analysis of BRDF measurements has to account both for nonlinear structure of the data as well as for a very ill-behaved noise. Standard statistical methods can not be safely directly applied to BRDF data. Our study of parameters for Lambertian models clarifies certain pitfalls in analysis of BRDF data, and helps to understand and develop more refined estimates for more realistic BRDF models that will be studied in subsequent papers. Second, we would use the Lambertian model parameter estimators from Section 6 to build statistical tests to test a hypothesis whether any particular material is perfect diffuse or not. This will be presented in a separate paper.

We also apply the notion of Pitman closeness to compare different estimators that could be used in BRDF models. This criterion for comparison of estimators appeals to the actually observable precision of estimators, and thus seems to be especially appropriate for applications in metrology. Based on this and other criteria, we show that, in the context of BRDF model parameter estimation, estimators based on either median or trimmed mean are safer to use and are often more accurate than estimators based on sample means.

2 Main definition

The bidirectional reflectance distribution function (BRDF), \(f(\omega_i, \omega_r) \) is a four-dimensional function that defines how light is reflected at an opaque surface. The function takes a negative incoming light direction, \(\omega_i \), and outgoing direction, \(\omega_r \), both defined with respect to the surface normal \(n \), and returns the ratio of reflected
Radiance exiting along ω_r to the irradiance incident on the surface from direction ω_i. Each direction ω is itself parameterized by azimuth angle ϕ and zenith angle θ, therefore the BRDF as a whole is 4-dimensional. The BRDF has units sr^{-1}, with steradians (sr) being a unit of solid angle.

The BRDF was first defined by Nicodemus in [21]. The definition is:

$$f_r(\omega_i, \omega_r) = \frac{dL_r(\omega_r)}{dE_i(\omega_i)} = \frac{dL_r(\omega_r)}{L_i(\omega_i) \cos \theta_i} d\omega_i.$$

(1)

where L is radiance, or power per unit solid-angle-in-the-direction-of-a-ray per unit projected-area-perpendicular-to-the-ray, E is irradiance, or power per unit surface area, and θ_i is the angle between ω_i and the surface normal, n. The index i indicates incident light, whereas the index r indicates reflected light.

3 Important models of diffuse reflection

3.1 Lambertian model

Lambertian model [11] represents reflection of perfectly diffuse surfaces by a constant BRDF. Because of its simplicity, Lambertian model is extensively used as one of the building blocks for models in computer graphics. It was believed for a long time that the so-called standard diffuse reflection materials exhibit Lambertian reflectance, but recent studies with actual BRDF measurements convincingly reject this hypothesis [6], [25], [4].

3.2 Oren-Nayar model

Oren-Nayar model [23] is a “directed–diffuse” microfacet model, with perfectly diffuse (rather than specular) microfacets. It can be viewed as a generalization of the Lambertian model. This is a reflectance model for diffuse reflection from rough surfaces. Oren-Nayar model is typically used to predict the appearance of rough surfaces, such as concrete or sand.

Recently, a more sophisticated model was proposed by [28]. This new model includes as special cases both Lambertian model and the Oren–Nayar model, as well as the Torrance–Sparrow model with specular microfacets.

3.3 Lommel-Seeliger

Lommel-Seeliger model [3] is used to simulate the brightening of a rough surface when illuminated from directly behind the observer. This is a physically inspired model of a special class of reflections from diffuse surfaces. This model is typically applied to model astronomical data, such as lunar and Martian reflection.

4 Statistical analysis of BRDF models

In this section, we treat parameter estimation for BRDF models of standard diffuse reference materials. These materials are supposed to have (close to) ideal diffuse reflection with constant BRDFs. Graphically, for each incoming angle θ_i, ϕ_i, the resulting BRDF $f_r(\omega_i, \omega_r)$ is a (subset of) the two-dimensional upper hemisphere. The radius ρ of this hemisphere is the parameter that we aim to estimate in this paper.

As we mentioned before, the Lambertian model has been shown to be inaccurate even for those materials that were designed to be as close to perfectly diffuse as possible. Therefore, parameter estimates determined for the Lambertian model can hardly be used in practice. However, there are two methodological reasons that make these estimators worth a separate study.
First, BRDF measurements represent a sample of points from a high-dimensional and highly non-linear non-convex manifold. Moreover, these measurements are collected via a nontrivial process, possibly involving random or systematic measurement errors of digital or geometric nature. These two observations suggest that any realistic statistical analysis of BRDF measurements has to account both for nonlinear structure of the data as well as for a very ill-behaved noise. Standard statistical methods typically assume nice situations like i.i.d. normal errors (see [13] for a more detailed discussion), and can not be safely directly applied to BRDF data. Our study of parameters for Lambertian models clarifies certain pitfalls in analysis of BRDF data, and helps to understand and develop more refined estimates for more realistic BRDF models that will be studied in subsequent papers.

Second, we would use the Lambertian model parameter estimators to build statistical tests to test a hypothesis whether any particular material is perfect diffuse or not. This will be studied in a separate paper, where we would improve on the results of [19].

Suppose we have measurements of a BRDF available for the set of incoming angles

\[\Omega_{inc} = \left\{ \omega_i^{(p)} \right\}_{p=1}^{P_{inc}} = \left\{ (\theta_i^{(p)}, \varphi_i^{(p)}) \right\}_{p=1}^{P_{inc}}. \]

(2)

Here \(P_{inc} \geq 1 \) is the total number of incoming angles where the measurements were taken. Say that for an incoming angle \(\{ \omega_i^{(p)} \} \) we have measurements available for angles from the set of reflection angles

\[\Omega_{refl}(p) = \left\{ \omega_r^{(q)} \right\}_{q=1}^{P_{refl}(p)} = \left\{ (\theta_r^{(q)}, \varphi_r^{(q)}) \right\}_{q=1}^{P_{refl}(p)}, \]

(3)

where \(\{ P_{refl}(p) \}_{p=1}^{P_{inc}} \) are (possibly different) numbers of measurements taken for corresponding incoming angles.

Overall, we have the set of random observations

\[\left\{ f(\theta_i^{(p)}, \varphi_i^{(p)}, \theta_r^{(q)}, \varphi_r^{(q)}) \mid (\theta_i^{(p)}, \varphi_i^{(p)}) \in \Omega_{inc}, (\theta_r^{(q)}, \varphi_r^{(q)}) \in \Omega_{refl}(p) \right\}. \]

(5)

Our aim is to infer properties of the BRDF function (5) from the set of observations (5). In general, the connection between the true BRDF and its measurements is described via a stochastic transformation \(T \), i.e.

\[f(\omega_i, \omega_r) = T(f_t(\omega_i, \omega_r)), \]

(6)

where

\[T : \mathcal{M} \times \mathcal{P} \times \mathcal{F}_4 \rightarrow \mathcal{F}_4, \]

(7)

with \(\mathcal{M} = (\mathcal{M}, \mathfrak{A}, \mu) \) is an (unknown) measurable space, \(\mathcal{P} = (\Pi, \mathfrak{B}, \mathbb{P}) \) is an unknown probability space, \(\mathcal{F}_4 \) is the space of all Helmholtz-invariant energy preserving 4-dimensional BRDFs, and \(\mathcal{F}_4 \) is the set of all functions of 4 arguments on the 3-dimensional unit sphere \(S^3 \) in \(\mathbb{R}^4 \).

Equations (6) and (7) mean that there could be errors of both stochastic or non-stochastic origin. In this setting, the problem of inferring the BRDF can be seen as a statistical inverse problem [14]. However, contrary to much literature on this subject, we do not assume linearity of the transformation \(T \), we do not assume that
JRP-i21 Gonioreflectometry

T is purely stochastic, and we do not assume an additive model with zero-mean parametric errors, as these assumptions do not seem realistic for BRDF measurements.

Of course, this setup is intractable in full generality, but for special cases such as inference for Lambertian model, we would be able to obtain quite general solutions. Related (weak) regularity conditions for several general setups in inverse problems were discussed in [15].

It is also easily observable (see, e.g., [6]) that for all materials their sub-BRDFs, consisting of measurements for different incoming angles, look substantially different (no matter if we believe in the underlying Lambertian model or not). This suggests that different sub-BRDFs of the same material still have different parameter values, and this in turn calls for applying statistical procedures separately for different sub-BRDFs and for combining the results via model selection, multitesting and related techniques.

5 Means, medians and robust estimators

5.1 Basic properties of distributions in BRDF data

In our choice of estimators for parameters in BRDF models, we have to take into account specific properties of BRDF data. It is important to notice that, due to the complicated structure of measurement devices, outliers are possible in the data. Additionally, due to technical difficulties in measuring peak values of BRDFs (see [24], [22]), we have to count on the fact that certain (even though small) parts of the data contain observations with big errors. This also leads us to conclusion that, even for simplest additive error models, we cannot blindly assume that random errors are identically distributed throughout the whole manifold. Additionally, missing data are possible and even inevitable for certain angles. Measurement angles themselves can be also arbitrary and non-uniformly distributed.

In view of the above arguments, a useful estimator for any BRDF model has to exhibit certain robustness against outliers [12] and dependent or mixed errors.

An estimator has to be universal enough in the sense that it has to be applicable to BRDF samples without requiring extra regularity in the data set, such as uniformly distributed (or other pre-specified) design points, pre-specified large number of measurements, or absence of missing values. This observation suggests that simpler estimators are more practical for BRDF data than complicated (even if possibly asymptotically optimal) estimators, as the later class of estimators has to rely on rather strict regularity assumptions about the underlying model.

5.2 Pitman closeness of estimators

Let Ω be a probability space and let $\hat{\theta}_1 : \Omega \rightarrow \mathbb{R}$ and $\hat{\theta}_2 : \Omega \rightarrow \mathbb{R}$ be estimators of a parameter $\theta \in \mathbb{R}$. Then the Pitman relative closeness of these two estimators at the point θ is defined as

$$P(\hat{\theta}_1, \hat{\theta}_2; \theta) = \mathbb{P}\left(|\hat{\theta}_1 - \theta| < |\hat{\theta}_2 - \theta|
ight).$$

(8)

The estimator $\hat{\theta}_1$ is Pitman closer to θ than $\hat{\theta}_2$, if

$$P(\hat{\theta}_1, \hat{\theta}_2; \theta) > \frac{1}{2}.$$

While this criterion for comparison of estimators is much less known as, say, unbiasedness or asymptotic variance, it appeals to the actually observable precision of estimators, and thus seems of interest for applications in metrology.
We apply the notion of Pitman closeness to compare different estimators that could be used in BRDF models. Based on this and other criteria, we show that, in the context of BRDF model parameter estimation, estimators based on either median or trimmed mean are safer to use and are often more accurate than estimators based on sample means.

We refer to [10] for an extensive discussion of the relative closeness of estimators and other related notions and their properties. Besides unbiasedness, asymptotic variance and relative closeness, there are many other criteria for comparing quality of statistical estimators. At least 7 of them can be found in [27].

5.3 Definitions of basic estimators

To exemplify these arguments, we consider the following basic estimators for the radius parameter of the Lambertian model: sample mean; sample median; trimmed (truncated) mean. We leave performance analysis of efficient but more complex machine learning procedures [17], [18], [16] to subsequent research.

Let X_1, X_2, \ldots, X_n be a sample from probability distribution F. Then the sample mean is defined as

$$sm(X) = \frac{1}{n} \sum_{i=1}^{n} X_i. \quad (9)$$

Let $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ be the order statistics of the sample X_1, X_2, \ldots, X_n. The sample median is defined as

$$smed(X) = \begin{cases} X_{(\frac{n+1}{2})}, & n \text{ is odd;} \\ \frac{1}{2} (X_{(n/2)} + X_{(n/2+1)}), & n \text{ is even.} \end{cases} \quad (10)$$

Let $0 \leq \alpha < 1/2$ be a number, and let $[\cdot]$ denote the integer part of a real number. Then the sample trimmed mean is defined as

$$tm_\alpha(X) = \frac{1}{n(1-2\alpha)} \left\{ ([n\alpha] + 1 - n\alpha)(X_{([n\alpha]+1)} + X_{(n-[n\alpha])}) + \sum_{i=[n\alpha]+2}^{n-[n\alpha]-1} X(i) \right\}. \quad (11)$$

If F_n denotes the empirical distribution function of the sample X_1, X_2, \ldots, X_n, then we can write, equivalently,

$$tm_\alpha(X) = \frac{1}{1-2\alpha} \int_{\alpha}^{1-\alpha} F_n^{-1}(t) \, dt. \quad (12)$$

5.4 Mean and median

Sample mean is known to be an asymptotically efficient estimator, as well as a uniformly minimum-variance unbiased estimator, for the expected value of the random variable. However, it is important to note that these nice properties are guaranteed only for sufficiently “nice” distributions (see [9] or [2]), while sometimes even marginal deviations from these nice models seriously spoil performance of the sample mean estimator. Even if the regularity conditions are only slightly violated, the sample mean estimator can lose its efficiency or can become inconsistent.

In view of the above discussion of properties of BRDF data, we conclude that it is not advisable to apply the sample mean directly as an estimator of the Lambertian radius.

Here we bring some examples to illustrate our points. An example from pp. 2 - 5 of [8] shows that, while the sample mean is even finite sample efficient for estimating parameters of normal distribution, this estimator loses
its nice performance properties already for mixtures of two normal distributions. Moreover, even a mixture with 0.2 percent of a different normal distribution can cause the sample mean to lose its efficiency.

In this and in the next subsection, we present some results of an extensive Monte Carlo experiment comparing relative closeness of different types of basic nonparametric estimators. Each of the graphs contains values of relative closeness obtained for samples of all sizes ranging from 1 to 1000 observations. We performed 1000000 comparisons for each sample size.

Figure 1 shows that for a sample of i.i.d. normal random variables mean has better relative closeness than the median, with the actual value being above 0.6. We notice that the situation remains essentially the same regardless of the variance of the underlying normal distribution.

However, if we are dealing with a heavy-tailed distribution, the picture changes. Suppose we are presented with a Cauchy distribution, and our goal is to estimate the mode (the mean does not exist in this case). Then Figure 2 shows that the relative closeness of the mean tends to 0 when compared with the median.

Mean surprisingly loses its efficiency even in rather smooth toy situations. Suppose that a sample from i.i.d. standard normal distribution is contaminated with 5% of i.i.d. normals with mean 0 and variance 10. The result is shown on Figure 3. Mean’s closeness compared to median drops to 0.3. Even more surprisingly, if we start with a sample of i.i.d. normals with mean 0 and variance 100 and contaminate this sample with just 5% of i.i.d. normals with mean 0 and small variance 1, the drop in mean’s closeness compared to median is even worse. Figure 4 shows that the relative closeness of mean drops to 0.1.

5.5 Truncated mean and mean

If our data are generated by sufficiently nice distribution such as, say, a normal distribution, then the sample mean possesses is an efficient estimator. In those cases, it can be rigorously proven that Mean is better than Trimmed Mean in the sense of both Pitman closeness, as well as asymptotic relative efficiency.

The picture can be reversed when our data are allowed to contain outliers or when the data can be, at least partially, generated by a heavy-tailed distribution (which is the case when large values of measurement errors are possible, as is the case for BRDF measurements of specular peaks). We give here a toy example with a Cauchy distribution. Figure 5 illustrates the relative efficiency of mean compared to the trimmed mean.
Figure 2: Median grossly outperforms mean for heavy-tailed distributions

Figure 3: Median can outperform mean for mixtures of normal distributions
Figure 4: Median can outperform mean for mixtures of normal distributions with small errors

with 10% of the extremes in data being discarded. The unusual shape of the relative closeness curve has no explanation at the moment.

Here the mean is an inconsistent estimator of the median of the distribution, while the truncated mean is not only a consistent estimator of the median, but, with a proper choice of the truncation point, is capable of outperforming the sample median in estimating the median \([26]\) One needs to drop out about 76% of the data, though. In fact, even more efficient estimators exist \([1]\), but they require to drop out almost all of the data, and we would not advise to use them for estimation in BRDF models or for any work with moderate sample sizes.

6 Parameter estimation for Lambertian models

For each \(\omega_i^{(p)}\) from the set of incoming angles \(\Omega_{inc}\), let \(\rho^{(p)}\) denote the Lambertian radius of the BRDF’s layer

\[
\left\{ f\left(\theta_i^{(p)}, \varphi_i^{(p)}, \theta_r^{(q)}, \varphi_r^{(q)} \right) \mid \left(\theta_i^{(p)}, \varphi_i^{(p)} \right) \in \Omega_{refl(p)} \right\},
\]

where \(\Omega_{refl(p)}\) is defined by \([4]\). Thus, we are estimating the \(P_{inc}\)-dimensional parameter vector

\[
\left\{ \rho^{(p)} \right\}_{p=1}^{P_{inc}}.
\]

For \(1 \leq p \leq P_{inc}\), let

\[
\left\{ f_{(i)}^{(p)} \right\}_{i=1}^{P_{refl(p)}}
\]

be the non-decreasing sequence of order statistics of the subsample \([15]\). Then the sample median estimator of the parameter vector \([14]\) is defined as

\[
\left\{ \hat{smed}^{(p)} \right\}_{p=1}^{P_{inc}}.
\]
Figure 5: Trimmed mean totally dominates mean for Cauchy distributions

where

\[
\hat{smed}^{(p)}(f) = \begin{cases}
 f_{(P_{refl}(p)+1)/2}, & P_{refl}(p) \text{ is odd;} \\
 \frac{1}{2} \left(f_{(P_{refl}(p)/2)} + f_{(P_{refl}(p)/2+1)} \right), & P_{refl}(p) \text{ is even.}
\end{cases} \tag{17}
\]

Let \(0 \leq \alpha < 1/2\) be a number, and let \([\cdot]\) denote the integer part of a real number. Then the sample trimmed mean estimator of the parameter vector (14) is defined as

\[
\left\{ \hat{tm}_\alpha^{(p)} \right\}_{p=1}^{P_{inc}}, \tag{18}
\]

where

\[
\hat{tm}_\alpha^{(p)}(f) = \frac{1}{P_{refl}(p)(1-2\alpha)} \times \\
\left\{ \left([P_{refl}(p)\alpha] + 1 - P_{refl}(p)\alpha \right) \left(f_{([P_{refl}(p)\alpha]+1)} + f_{(P_{refl}(p)-[P_{refl}(p)\alpha])} \right) + \\
 \sum_{i=[P_{refl}(p)\alpha]+2}^{P_{refl}(p)-[P_{refl}(p)\alpha]-1} f_{(i)} \right\}. \tag{19}
\]

7 Conclusions

BRDF is one of the fundamental concepts in such diverse fields as multidimensional reflectometry, computer graphics and computer vision. Usually, either physically inspired analytic reflectance models, or parametric reflectance models chosen via qualitative criteria, are taken for granted and used to model BRDFs. These BRDF models are only crude approximations of reflectance of real materials. Moreover, analytic reflectance models are limited to describing only special subclasses of materials.
In computer graphics and vision, it is important that BRDF models should be processed in real-time, but quantitative accuracy is not as important. In reflectometry and metrology, it is the opposite: there is typically no need in real-time processing of BRDFs, but quantitative accuracy is the paramount. In view of this, some of the breakthrough results from computer vision and animation would not fit applications in reflectometry and in many industries.

Another difference with virtual reality models is that in computer graphics measurement uncertainties are essentially never present. This is not the case in metrology, reflectometry and in any real-world based industry. Since measurement errors can greatly influence shape and properties of BRDF manifolds, there is a clear need to develop new methods for handling BRDFs with measurement uncertainties.

In this paper, we treated BRDF measurements as samples of points from high-dimensional non-linear non-convex manifold. We have shown that statistical analysis of BRDF measurements has to account both for nonlinear structure of the data as well as for ill-behaved noise. Standard statistical methods can not be safely directly applied to BRDF data. Our study of parameters for Lambertian models clarified certain pitfalls in analysis of BRDF data. We developed more refined estimators for BRDF models of standard diffuse reference materials.

We also applied the notion of Pitman closeness to compare different estimators for BRDF models. This criterion for comparison of estimators seems to be especially appropriate for applications in metrology. Based on this and other criteria, we have shown that, in the context of BRDF model parameter estimation, estimators based on either median or trimmed mean are safer to use and are often more precise than estimators based on sample means.

Acknowledgements

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

References

JRP-i21 Gonioreflectometry

