Data-driven goodness-of-fit tests

Mikhail Langovoy

Institute for Applied Mathematics, University of Bonn

September 1, 2008

- Introduction
 - Main ideas
 - Data-driven tests
- General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

- Introduction
 - Main ideas
 - Data-driven tests
- General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

- Introduction
 - Main ideas
 - Data-driven tests
- 2 General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

Two Approaches

- Constructing good tests is an essential problem of statistics.
- Two approaches:
 - direct: "distance" between theoretical and empirical distribution is proposed as statistic
 - aiming optimality: construct tests which are asymptotically efficient (Neyman, Le Cam, Wald)

Two Approaches

- Constructing good tests is an essential problem of statistics.
- Two approaches:
 - direct: "distance" between theoretical and empirical distribution is proposed as statistic
 - aiming optimality: construct tests which are asymptotically efficient (Neyman, Le Cam, Wald)

Examples of Distance-Based Statistics

Kolmogorov - Smirnov:

$$D_n = \sqrt{n} \|F_n - F\|_{\infty}$$

Cramer - von Mises:

$$\omega_n^2 = n \int_{-\infty}^{\infty} \left(F_n(t) - F_0(t) \right)^2 dF_0(t)$$

many other

About Distance-Based Tests

- These tests works
- asymptotically optimal only in a few directions of alternatives

Another type: Neyman's Statistic

- hypothesis $H_0: X \sim U[0,1]$
- $\{\phi_j\}_{j=0}^{\infty}$ orthonormal basis of $L_2([0,1],\lambda)$

$$N_k = \sum_{j=1}^k \left\{ n^{-\frac{1}{2}} \sum_{i=1}^n \phi_j(X_i) \right\}^2$$

Another type: Neyman's Statistic

- hypothesis $H_0: X \sim U[0,1]$
- $\{\phi_j\}_{j=0}^{\infty}$ orthonormal basis of $L_2([0,1],\lambda)$

$$N_k = \sum_{j=1}^k \left\{ n^{-\frac{1}{2}} \sum_{i=1}^n \phi_i(X_i) \right\}^2$$

Another type: Neyman's Statistic

- hypothesis $H_0: X \sim U[0,1]$
- $\{\phi_j\}_{j=0}^{\infty}$ orthonormal basis of $L_2([0,1],\lambda)$

•

$$N_k = \sum_{j=1}^k \left\{ n^{-\frac{1}{2}} \sum_{i=1}^n \phi_j(X_i) \right\}^2$$

- Introduction
 - Main ideas
 - Data-driven tests
- General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

Idea of Selection Rule

- model dimension k was known fixed in advance
- important: select the right model dimension!
 - incorrect choice can decrease the power of a test
- Solution: incorporate the test statistic by some procedure choosing the right dimension automatically by the data

Idea of Selection Rule

- model dimension k was known fixed in advance
- important: select the right model dimension!
 - incorrect choice can decrease the power of a test
- Solution: incorporate the test statistic by some procedure choosing the right dimension automatically by the data

Idea of Selection Rule

- model dimension k was known fixed in advance
- important: select the right model dimension!
 - incorrect choice can decrease the power of a test
- Solution: incorporate the test statistic by some procedure choosing the right dimension automatically by the data

Bonuses of data-driven score tests

Data-driven score tests are

- asymptotically optimal in an infinite number of directions
- show good overall performance in practice

- Introduction
 - Main ideas
 - Data-driven tests
- 2 General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

- Introduction
 - Main ideas
 - Data-driven tests
- 2 General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

Definition

- nested family of models M_k for k = 1, ..., d(n)
- d(n) control sequence
- choose $\pi(\cdot,\cdot):\mathbb{N}\times\mathbb{N}\to\mathbb{R}$
- assume
 - $\pi(1, n) < \pi(2, n) < \ldots < \pi(d(n), n)$ for all n
 - $\pi(j,n) \pi(1,n) \to \infty$ as $n \to \infty$ for $j = 2, \dots, d(n)$

Call $\pi(j, n)$ a penalty attributed to model M_i and sample size n.

Definition

- nested family of models M_k for k = 1, ..., d(n)
- d(n) control sequence
- choose $\pi(\cdot,\cdot):\mathbb{N}\times\mathbb{N}\to\mathbb{R}$
- assume
 - $\pi(1, n) < \pi(2, n) < \ldots < \pi(d(n), n)$ for all n
 - $\pi(j,n) \pi(1,n) \to \infty$ as $n \to \infty$ for $j = 2, \dots, d(n)$

Call $\pi(j, n)$ a penalty attributed to model M_j and sample size n.

Definition

- nested family of models M_k for k = 1, ..., d(n)
- d(n) control sequence
- choose $\pi(\cdot,\cdot): \mathbb{N} \times \mathbb{N} \to \mathbb{R}$
- assume
 - $\pi(1, n) < \pi(2, n) < \ldots < \pi(d(n), n)$ for all n
 - $\pi(j,n) \pi(1,n) \to \infty$ as $n \to \infty$ for $j = 2, \dots, d(n)$

Call $\pi(j, n)$ a penalty attributed to model M_j and sample size n.

Definition

- nested family of models M_k for k = 1, ..., d(n)
- d(n) control sequence
- choose $\pi(\cdot,\cdot):\mathbb{N}\times\mathbb{N}\to\mathbb{R}$
- assume
 - $\pi(1, n) < \pi(2, n) < \ldots < \pi(d(n), n)$ for all n
 - $\pi(j,n)-\pi(1,n)\to\infty$ as $n\to\infty$ for $j=2,\ldots,d(n)$

Call $\pi(j, n)$ a penalty attributed to model M_j and sample size n.

Selection rule

• T_k : testing validity of M_k

Definition

A selection rule S for the sequence of statistics $\{T_k\}$ is

$$S = \min\{k : 1 \le k \le d(n); T_k - \pi(k, n) \ge T_j - \pi(j, n), j = 1, \dots, d(n)\}$$

Call T_S a data-driven test statistic for testing validity of the initial model.

- Introduction
 - Main ideas
 - Data-driven tests
- 2 General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

- X_1, X_2, \ldots random variables, values in a measurable space \mathbb{X}
- X_1, \ldots, X_m have joint distribution $P_m \in \mathbb{P}_m$ for every m
- function $\mathcal F$ acting from $\otimes_{m=1}^\infty \mathbb P_m = (\mathbb P_1, \mathbb P_2, \ldots)$ to a known set Θ
- $\bullet \ \mathcal{F}(P_1,P_2,\ldots)=\theta$

- X_1, X_2, \ldots random variables, values in a measurable space \mathbb{X}
- X_1, \ldots, X_m have joint distribution $P_m \in \mathbb{P}_m$ for every m
- function $\mathcal F$ acting from $\otimes_{m=1}^\infty \mathbb P_m = (\mathbb P_1, \mathbb P_2, \ldots)$ to a known set Θ
- $\mathcal{F}(P_1, P_2, ...) = \theta$

•

$$H_0: \theta \in \Theta_0 \subset \Theta$$

•

$$H_A: \quad \theta \in \Theta_1 = \Theta \setminus \Theta_0$$

- observations Y_1, \ldots, Y_n , values in a measurable space \mathbb{Y}
- not necessarily on the basis of X_1, \ldots, X_m !

•

$$H_0: \theta \in \Theta_0 \subset \Theta$$

0

$$H_A: \quad \theta \in \Theta_1 = \Theta \setminus \Theta_0$$

- observations Y_1, \ldots, Y_n , values in a measurable space \mathbb{Y}
- not necessarily on the basis of X_1, \ldots, X_m !

- Introduction
 - Main ideas
 - Data-driven tests
- General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

- Introduction
 - Main ideas
 - Data-driven tests
- General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

Definition

- observations Y_1, \ldots, Y_n , values in a measurable space \mathbb{Y}
- k fixed number
- $I = (I_1, \dots, I_k)$ vector-function
- $I_i: \mathbb{Y} \to \mathbb{R}$ for $i = 1, \dots, k$ are known Lebesgue measurable

Definition

0

$$L = \{E_0[I(Y)]^T I(Y)\}^{-1}$$

- E₀ is with respect to P₀
- P₀ is the d.f. of some (fixed and known) random variable Y
- Y has values in Y
- assume
 - $E_0 I(Y) = 0$
 - L is well defined

Definition

0

$$L = \{E_0[I(Y)]^T I(Y)\}^{-1}$$

- E₀ is with respect to P₀
- P₀ is the d.f. of some (fixed and known) random variable Y
- Y has values in \mathbb{Y}
- assume
 - $E_0 I(Y) = 0$
 - L is well defined

Definition

$$T_k = \left\{ \frac{1}{\sqrt{n}} \sum_{j=1}^n I(Y_j) \right\} L \left\{ \frac{1}{\sqrt{n}} \sum_{j=1}^n I(Y_j) \right\}^T$$

 T_k - statistic of Neyman's type (NT-statistic)

- Introduction
 - Main ideas
 - Data-driven tests
- General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

New possibilities

l_1, \ldots, l_k can be

- some score functions
- any other functions, depending on the problem
 - truncated, penalized or partial likelihood
 - possible to use l_1, \ldots, l_k unrelated to any likelihood

New possibilities

 I_1, \ldots, I_k can be

- some score functions
- any other functions, depending on the problem
 - truncated, penalized or partial likelihood
 - possible to use l_1, \ldots, l_k unrelated to any likelihood

New possibilities

 l_1, \ldots, l_k can be

- some score functions
- any other functions, depending on the problem
 - truncated, penalized or partial likelihood
 - possible to use l_1, \ldots, l_k unrelated to any likelihood

Important applications

- statistical inverse problems
- rank tests for independence
- semiparametric regression

Important applications

- statistical inverse problems
- rank tests for independence
- semiparametric regression

Important applications

statistical inverse problems

rank tests for independence

semiparametric regression

Statistical inverse problems

Deconvolution

- applications from signal processing to psychology
- basic statistical inverse problem

• instead of X_i one observes Y_i

$$Y_i = X_i + \varepsilon_i$$

- ε_i 's are i.i.d. with a known density h
- X_i and ε_i are independent for each i
- H_0 : X has density f_0

• instead of X_i one observes Y_i

$$Y_i = X_i + \varepsilon_i$$

- ε_i 's are i.i.d. with a known density h
- X_i and ε_i are independent for each i
- H_0 : X has density f_0

- choose for every $k \le d(n)$ an auxiliary parametric family $\{f_{\theta}\}$
- $\theta \in \Theta \subseteq \mathbb{R}^k$
- f_0 from this family coincides with f_0 from the null hypothesis H_0
- the true F possibly has no relation to the chosen $\{f_{\theta}\}$

$$I(y) = \frac{\frac{\partial}{\partial \theta} \left(\int_{\mathbb{R}} f_{\theta}(s) h(y-s) ds \right) \Big|_{\theta=0}}{\int_{\mathbb{R}} f_{0}(s) h(y-s) ds}$$

define T_k as above \Rightarrow T_k is an NT-statistic

Outline

- Introduction
 - Main ideas
 - Data-driven tests
- General notions
 - Selection rule
 - Framework
- NT-statistics
 - Definitions
 - Examples
 - Theorems

Null distribution

Theorem

- {*T_k*} sequence of NT-statistics
- S selection rule, with penalty of proper weight
- large deviations of T_k are properly majorated

•

$$d(n) \leq \min\{u_n, m_n\}.$$

Then $S = O_{P_0}(1)$ and $T_S = O_{P_0}(1)$.

Consistency condition

 $\langle \mathbf{C} \rangle$ there exists integer $K = K(P) \ge 1$ such that

$$E_P I_1(Y) = 0, \dots, E_P I_{K-1}(Y) = 0, \ E_P I_K = C_P \neq 0$$

Consistency theorem

Theorem

- {*T_k*} sequence of NT-statistics
- S selection rule, with penalty of proper weight
- the regularity assumptions are satisfied
- $\bullet \ d(n) = o(r_n), \, d(n) \leq \min\{u_n, m_n\}.$

Then T_S is consistent against any (fixed) alternative P satisfying (C).