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Two Approaches

@ Constructing good tests is an essential problem of statistics.
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Two Approaches

@ Constructing good tests is an essential problem of statistics.
@ Two approaches:

° : "distance" between theoretical and empirical distribution is
proposed as statistic

° : construct tests which are asymptotically efficient
(Neyman, Le Cam, Wald)
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Examples of Distance-Based Statistics

@ Kolmogorov - Smirnov:
Dp=+/'n|Fa—Fl|,
@ Cramer - von Mises:
W = n/ (Falt) — Fo(t))? d Fo(t)

@ many other
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About Distance-Based Tests

@ These tests works

@ asymptotically optimal only in a few directions of alternatives
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Another type: Neyman'’s Statistic

@ hypothesis Hp : X ~ U[0, 1]
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Another type: Neyman'’s Statistic

@ hypothesis Hp : X ~ U[0, 1]

° {¢j}fio orthonormal basis of L([0, 1], A)
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Another type: Neyman'’s Statistic

@ hypothesis Hp : X ~ UJ0, 1]
° {qﬁj} * o Orthonormal basis of L»([0, 1], A)

)

Jj=1
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@ Introduction

@ Data-driven tests
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Idea of Selection Rule

@ model dimension k was known fixed in advance
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Idea of Selection Rule

@ model dimension k was known fixed in advance

@ important: select the right model dimension!
@ incorrect choice can decrease the power of a test

@ Solution: incorporate the test statistic by some procedure
choosing the right dimension automatically by the data
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Bonuses of data-driven score tests

Data-driven score tests are

@ asymptotically optimal in an infinite number of directions

@ show good overall performance in practice
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Penalty

@ nested family of models My for k =1, ..., d(n)
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Penalty

@ nested family of models My for k =1, ..., d(n)
@ d(n) control sequence
@ choose 7(-,-) : N xN— R

@ assume
o m(1,n) < w(2,n) <...<w(d(n),n)forall n

o w(j,n)—7(1,n) > ocasn—ooforj=2,...,d(n)

Call 7(j, n) a penalty attributed to model M; and sample size n.
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Selection rule

@ Tyx: testing validity of My

Definition
A selection rule S for the sequence of statistics { Tk} is

S=min{k: 1<k <d(n); Tx—m(k,n) > T,—x(j,n), j=1,...,d(n)}

Call Ts a data-driven test statistic for testing validity of the initial model.

v
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e General notions

@ Framework
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Framework

@ Xj, Xo,...random variables, values in a measurable space X

@ Xi,...,Xm have joint distribution P, € P, - for every m
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Framework

@ Xj, Xo,...random variables, values in a measurable space X
@ Xi,...,Xm have joint distribution P, € P, - for every m
@ function F acting from 7> Py = (P1,P2,...) to a known set ©

o f(P1,P2,...):9
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Framework

Hy: 6e€©gCc©O

HA: 96@129\@0
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Framework

)
Hy: 6e€©gCc©O
)
HA . e =0 \ Qo
@ observations Yi, ..., Yy, values in a measurable space Y
@ not necessarily on the basis of Xj, ..., X !
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e NT-statistics
@ Definitions
@ Examples
@ Theorems
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e NT-statistics
@ Definitions
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Main concept

@ observations Yy, ..., Yp, values in a measurable space Y

@ k fixed number
@ /= (h,...,I) vector-function

@ /i: Y—Rfori=1,..., k are known Lebesgue measurable

M. Langovoy (University of Bonn) Data-driven tests 01.09.2008 21/34



Main concept

= 1
L= {El(MNTI(V)}
o Eyis with respect to P,
@ Py is the d.f. of some (fixed and known) random variable Y

@ Y hasvaluesinyY
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Main concept

= 1
L= {El(MNTI(V)}
o Eyis with respect to P,
@ Py is the d.f. of some (fixed and known) random variable Y

@ Y hasvaluesinyY

@ assume
o Eol(Y)=0

o L is well defined
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Main concept

n n T
1 1
Te=3— > I(Y))p LI— D 1Y)
) {ﬁ; f} {ﬁ; f}

Ty - statistic of Neyman’s type (NT-statistic)
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e NT-statistics

@ Examples
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New possibilities

li, ..., Iy can be
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New possibilities

li, ..., Iy can be

@ some score functions

@ any other functions, depending on the problem

e truncated, penalized or partial likelihood

@ possible to use /i, ..., Ik unrelated to any likelihood
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Important applications

° statistical inverse problems
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Important applications

° statistical inverse problems
° rank tests for independence
° semiparametric regression
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Statistical inverse problems

Deconvolution

@ applications from signal processing to psychology

@ basic statistical inverse problem
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Deconvolution

@ instead of X; one observes Y;

Yi=Xi+ei
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Deconvolution

@ instead of X; one observes Y;

Yi=Xi+ei

@ ¢is are i.i.d. with a known density h
@ X; and ¢; are independent for each i

@ Hp: X hasdensity fy
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Deconvolution

@ choose for every k < d(n) an auxiliary parametric family {f,}
@ ) c©CRK
@ fy from this family coincides with fy from the null hypothesis Hy

@ the true F possibly has no relation to the chosen {fy}
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Deconvolution

(fngs —s)ds)’
Jz fo(s)h(y —s)ds

Iy) =

) define T, as above = T is an NT-statistic
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e NT-statistics

@ Theorems
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Null distribution

@ {Tx} sequence of NT-statistics
@ S selection rule, with penalty of proper weight
@ large deviations of Ty are properly majorated

°
d(n) < min{up,mp}.

Then S = Op,(1) and Ts = Op,(1).
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Consistency condition

(C) there exists integer K = K(P) > 1 such that

Eph(Y)=0,...,Eplk_1(Y)=0, Eplx =Cp #0
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Consistency theorem

@ {Tx} sequence of NT-statistics
@ S selection rule, with penalty of proper weight
@ the regularity assumptions are satisfied

@ d(n) = o(r), d(n) < min{up, mp}.

Then Tgs is consistent against any (fixed) alternative P satisfying (C).
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